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THE GAME OF HEX AND THE BROUWER FIXED-POINT THEOREM 

DAVID GALE 

1. Introduction. The application of mathematics to games of strategy is now represented by 
a voluminous literature. Recently there has also been some work which goes in the other 
direction, using known facts about games to obtain mathematical results in other areas. The 
present paper is in this latter spirit. Our main purpose is to show that a classical result of 
topology, the celebrated Brouwer Fixed-Point Theorem, is an easy consequence of the fact that 
Hex, a game which is probably familiar to many mathematicians, cannot end in a draw. This 
fact is of some practical as well as theoretical interest, for it turns out that the two-player, 
two-dimensional game of Hex has a natural generalization to a game of n players and n 
dimensions, and the proof that this game must always have a winner leads to a simple algorithm 
for finding approximate fixed points of continuous mappings. This latter subject is one of 
considerable current interest, especially in the area of mathematical economics. This paper has 
therefore the dual purpose of, first, showing the equivalence of the Hex and Brouwer Theorems 
and, second, introducing the reader to the subject of fixed-point computations. 

I should say that over the years I have heard it asserted in "cocktail conversation" that the 
Hex and Brouwer Theorems were equivalent, and my colleague John Stallings has shown me an 
argument which derives the Hex Theorem from familiar topological facts which are equivalent 
to the Brouwer Theorem. The proof going in the other direction only occurred to me recently, 
but in view of its simplicity it may well be that others have been aware of it. The generalization 
to n dimensions may, however, be new. 

In the next section we will present the relevant facts about Hex. In Section 3 we prove the 
equivalence of the Hex and Brouwer Theorems. The general Hex Theorem and fixed-point 
algorithm are presented in the final section. 

2. Hex. For a brief history of the game of Hex the reader should consult [2]. The game was 
invented by the Danish engineer and poet Piet Hein in 1942 and rediscovered at Princeton by 
John Nash in 1948. It was produced commercially by Parker Brothers in 1952 but has been "out 
of print" in this country for many years. However, the game is still very popular and much 
played in other countries, including France, Germany, and Israel. 

Figure 1 represents an 11X 11 Hex board. The rules of the game are very simple. As in 
tic-tac-toe, the two players move alternately, marking any previously unmarked hexagon or tile 
with an x or o respectively. The game has been won by the x- (0-) player if he/she has succeeded 
in marking a connected set of tiles which meets the boundary regions X and X' ( 0  and 0'). (A 
set S of tiles is connected if any two members h and h' of S can be joined by a path 
P = ( h =  h1,h2, ...,h m =  h') where hi and hi+' are adjacent.) 

In Figure 1 neither player has won and it is the o-player's move, but the x-player has a sure 
win in 3 moves if he plays on the shaded tiles, as the reader will easily verify. The potentially 
winning connected set is indicated by the tiles marked by the underlined x's. 

The appealing feature of Hex is that, unlike tic-tac-toe, it can never end in a draw; because, 
as explained in [2], "one player can block the other only by completing his own chain." To be a 
bit more precise let us state: 

The author received his Ph.D. from Princeton in 1949, taught at Brown from 1950 to 1966, and since 1966 has 
been Professor of Mathematics, Economics, and Operations Research at Berkeley. He has beep a Fulbright 
Research Scholar, a Guggenheim Fellow, and an NSF Senior Fellow. Besides the interests indicated by the title of 
his professorship, he is interested in the theory of games, the geometry of convex sets, and combinatorics.-Editors 
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HEXTHEOREM.If evety tile of the Hex board is marked either x or o, then there is either an 
x-path connecting regions X and X' or an o-path connecting regions 0 and 0'. 

The theorem is indeed intuitively quite obvious. Imagine, for example, that the X-regions are 
portions of opposite banks of the river "0" (as suggested by the ripples in the figure) and that 
the x-player is trying to build a dam by putting down stones. It is quite clear that he will have 
succeeded in damming the river only if he has placed his stones in a way which enables him to 
walk on them from one bank to the other. Nevertheless, this intuitively obvious fact is 
mathematically "deep," in that, as we shall see, it leads to a very short proof of the Brouwer 
Theorem. 

Of course, intuitively obvious theorems which are hard to prove are nothing new in topology. 
The most celebrated case is the Jordan Curve Theorem, and it turns out that this theorem too is 
related to Hex; that is, one can strengthen the Hex Theorem by appending at the end of the 
statement the words "but not both." This latter property is, if possible, even more obvious than 
the fact that one of the players must win; for clearly-to continue the land-water analogy-if 
the x-player succeeds in constructing a causeway from X to X', he will in the process have 
dammed the river and prevented any flow from 0 to 0'. The connection with the Jordan 
Theorem is evident. We wish to emphasize,'however, that the analysis to follow and the relation 
to the Brouwer Theorem depends only on the no-draw property. The fact that it is not possible 
for both players to construct winning sets is special to two dimensions and the argument 
involved in proving it will not be given here, since for our purposes it is irrelevant. (Recently D. 
Lichtenstein has shown me a neat, purely combinatorial proof of "but not both," but the 
methods used-induction on the size of the board-are quite different from those to be used 
here to prove "at least one"; so once again it appears that these two results are mathematically 
quite distinct.) 

How then does one prove the (weak) Hex Theorem? The only proof I know of is in 
the elementary text [I]. The proof there is quite rigorous, though "informal," meaning that it 
uses English and pictures rather than symbols. It runs to some four pages of fine print and 
invokes (unnecesssly, I believe) the Jordan Curve Theorem. The proof to be presented here is 
closely related to that of [I] but is considerably shorter. We will also remain informal in this 
section so as to emphasize the intuitive geometrical ideas which also form the basis of the formal 
n-dimensional proof of Section 4. 

Here then is our proof. Suppose the board has been covered by x's and 0's as in Figure 2. By 
an X-face we will mean either a tile marked x or one of the regions X or X'. An 0-face is 
defined analogously. 

We consider the edge graph r of the Hex board to which additional edges ending in vertices 
u, u', v, v' have been added to separate the four boundary regions, as shown in the figure. We 
now present an algorithm for finding a winning set on the completely marked board. We shall 
make a tour along I?, starting from the vertex u and following the simple rule of always 
proceeding along an edge which is the common boundary of an X-face and an 0-face. Note that 
the edge from u has this property since it separates regions X and 0.The key observation is that 
this touring rule determines a unique path; for suppose one has proceeded along some edge e 
and arrives at a vertex w. Two of the three faces incident to w are those of which e is the 
common boundary, hence one is an X-face, the other an 0-face. The third face incident to w 
may be either an X-face or an 0-face, but in either case there is exactly one edge e' which 
satisfies the touring rule. Figure 2 makes this clear (in Section 4 the situation will be completely 
"arithmetized" so that no picture will be needed). 

Again one could make the seemingly stronger touring rule that the traveler a l d Y s  kGep an 
X-face on his "right" and a 0-face on his "left," but this would involve getting i d o  the quite 
complex notion of orientation, which is not needed for our proof. The proof depends now on the 
fact that our touring rule guarantees that we will never revisit any vertex. On the other hand, 
since there are only a finite number of vertices of the graph, the tour must terminate; but the 
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only possible terminals are the vertices u', v, and v' (actually u' is not a possibility because of the 
"right-left" condition; but, again, we need not prove this more difficult fact). Now note that 
each of these three vertices is incident to one of the regions X' or 0' (or both in the case of u'). 
If, say, the terminal vertex is incident to X', then the X-player has a winning set; for clearly the 
set of X-faces which are incident to our edge tour is a connected set and meets both X and X'. 

Before concluding the section we wish to point out that the crucial feature of our algorithm is 
the italicized statement in the above paragraph which guarantees that the procedure cannot 
"cycle." In fact, the result which is the basis for all "fixed-point-chasing" algorithms is the 
following obvious fact from graph theory. 

GRAPH LEMMA. A (finite) graph whose vertices have degree at most two is the union of disjoint 
subgraphs, each of which is either (i) an isolated vertex, (ii) a simple cycle, (iii) a simple path. 

We will not insult our readers' intelligence by presenting a proof of this simple fact but 
suggest that they take a few minutes to see how it goes. Induction on the number of edges is 
recommended. The connection with the Hex algorithm should be clear. If we consider only 
subgraph r' of r consisting of edges which separate an X-face and an 0-face, then clearly the 
hypothesis of the Graph Lemma is satisfied and the conclusion shows that the component of r 
starting from u must end up at one of the other degree-one vertices u', v, v'. 

Figure 2 shows the graph I?' for the completely marked board. It consists in this case of 6 
simple cycles, 30 isolated vertices, and the two simple paths, in this case from u to v' and from u' 
to u. 

3. The Equivalence of the Hex and Brouwer Theorems. For analytic purposes it is con- 
venient to use a different but equivalent model for the Hex board. Actually, when John Nash 
rediscovered the game in 1948, he thought of it as being played on a checkerboard where two 
squares were considered to be adjacent if they were next to each other horizontally, vertically, or 
along a positively sloping diagonal. It is clear that this is combinatorially equivalent to the more 
aesthetic hexagon arrangement. This representation is easily arithmetized in a way which will 
generalize to n dimensions. 

Notation. 
Z n  denotes the lattice points of R". For x E Rn, 1x1 =maxixi. For x +=y € Rn, x <y if xi < yi 

for all i. The points x and y are called comparable if x <y or y <x. 
The (two-dimensional) Hex board Bk of size k is a graph whose vertices consist of all z in Z 2  

with (1,l) <z  < (k,k). Two vertices z and z' are adjacent (span an edge) in Bk if 

z and z' are comparable. (3.2) 

Figure 3 gives the graphical representation of a Hex board of size 5. The boundary edges are 
labeled by the points of the compass N, S, E, W and consist of the vertices z =(z,,z2) of Bkwith 
z2= k, z2 =0, zI = k, zI  =0, respectively. We think of the horizontal (vertical) player as trying to 
make a path connecting E and W (N and S). We can now restate 

HEX THEOREM. Let Bkbe covered by two sets H and V. Then either H contains a connected set 
meeting E and W or V contains a connected set meeting N and S. 

A purely combinatorial proof of this theorem generalized to n dimensions will be given in the 
next section. In this section we will show that it is equivalent to 

BROUWER THEOREM.FIXED-POINT Let f be a continuous mapping from the unit square I2into 
itself. Then there exists x E12such that f (x)= x. 

We first show, that "Hex" implies "Brouwer." Let f : 12+12be given by f (x)=(fi(x)f2(x)). 
From compactness of 12it suffices to show that for any E > O  there exists x € 1 2  such that 
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I j ( x ) -  xl <E.  By uniform continuity of j we know that, given E>O,  there is a 6 >O such that 
S < E  and if Ix-x'l <6 then I f ( x ) -  j(x')l <E. 

Now consider the Hex board B, where l / k < S .  We will define four subsets H + ,  H - ,  v+ ,  
V- of BK as follows: 

H+= {zl j 1 ( z / k ) - z l / k > ~ )  

H - = { z l z l / k  - j l ( z / k )  > E )  

V' = { z l f 2 ( z / k ) - z 2 / k > ~ )  

V- = j 2 ( z / k )  > E ) .  { z I ~ ~ / k -

Intuitively, a vertex z belongs to H +,H - ,  V+, V- according as z / k  is moved by f at least E 

units to the right, left, up, or down, respectively. 
The theorem will be proved if we can show that these four sets do not cover B,; for, if vertex 

z lies in none of them, then 1 f  ( z / k ) - z / k J  <E.  The key observation is now that the (disjoint) 
sets H + and H - (V and V - l)  are not contiguous (a pair of subsets A and B of a graph are + 

called contiguous if there exists a EA and b EB where a and b are adjacent). That is, if z E H + 

and Z ' E H - ,  then 

fl(./k) -z1/k  >E 

and 
z ; / k -  f1 ( z f / k )>e .  

Adding gives 

j l ( z / k )  -j 1 ( z f / k ) + z ; / k - z l / k  > 2 ~ ,  

b u t z ; / k - z , / k < S < ~  by thechoice of 6 and k,so 
z ; / k - z ; / k >  - E .  

Adding (3.3) and (3.4) gives 

f 1 ( z / k )  - f , ( z ' / k )  >E, 
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which shows that z and z' are not adjacent; for if they were we would have Iz/k-zl/kl = 
l /k  <S, which would contradict the choice of 6. 

Similarly V+ and V- are not contiguous. Now let H =  H +  u H - ,  V= V+ u V-, and 
suppose Q is a connected set lying on H. From the previous paragraph, Q must lie entirely in 
H or H -. But note that H + does not meet E sincef maps into 12, and hence no point on the + 

right boundary can be mapped to the right. Similarly, H -  does not meet W, so Q cannot meet 
both E and W. Similarly, V contains no connected set meeting both N and S. By the Hex 
Theorem, therefore, the sets H and V do not cover Bk, completing the proof. . 

The proof that "Brouwer" implies "Hex," based on a suggestion of John Stallings modified 
by one of Michael Todd, makes use of the fact that the Hex boardBk gives a triangulation of the 
k X k square I: in R2. It is easy to prove the geometrically obvious fact that each point of 12is 
uniquely expressible as a convex combination of some set of (at most three) vertices, all of which 
are (pairwise) adjacent. These sets of vertices are the edges and triangles of Figure 3. The reader 
who is not familiar with this can see how it goes by working out an algorithm which for each 
point x =(x,,x2) in I: picks out the set of mutually adjacent vertices in whose convex hull x lies. 

We will make use also of the fact that any mapping f from Bk into R 2  extends to a continuous 
simplicial (or piecewise linear) map f on I:. Namely, if x =hlzl +h2z2+X3z3 (where the A, are 
non-negative numbers summing to 1) then by definition f(x)=A, f (zl)+A, f (z2)+h3f (z3). 

Assume then that Bk is partitioned by two sets H and V, and again define four sets as 
follows: let @ be all vertices connected to W by an H-path and let l?= H - @. Let $ be all 
vertices connected to S by a V-path and let I?= V- 9. From the definition it is clear that @and 
I? (8and 9 ) are not contiguous. Our proof is by contradiction assuming there is no H-path 
from E to W and no V-path from N to S. Let el'and e2 be the unit vectors of R 2  and define the 
mappingf from Bk into itself by 

f ( z ) = z + e l f o r z ~ @  

= z - e l f o r z ~ g  

= z + e 2 f o r z € $  

=z-e2 f o r z ~ I ? .  
For each of the four possibilities above one must verify that f (z) is indeed in I:. For example, 

z + el is not in Bk only if z EE; but by the assumption that there is no H-path from W to E, we 
see that @ does not meet E. It is also true (but for a different reason) that I? does not meet W. 
The reader should check the remaining two cases as well. 

We now extend f simplicially to all of I: and obtain a contradiction by showing that f has no 
fixed point. This is a consequence of the following simple algebraic fact. 

LEMMA1. Let zl,  z2, z3 be vertices of any triangle A in R 2  and let fi be the simplicia1 extension 
of the mapping p defned by p(zi) =z i+ vi where vl, v2, v3 are given vectors. Then f has a fixed 
point if and only if 0 lies in the convex hull of vl, v2, v3. .Let x =Xlzl +X2z2 +X3z3. Then fi(x)=Xl(zl + vl) +X2(z2 + v2)+X3(z3+ v3) and x is fixed if 
and only if Alvl +X2v2+A3v3=0. . 

We apply this Lemma to the mapping f. Again the key fact is the non-contiguousness of @ 
and I? (3 and I?) which implies that if one looks at three vertices of any triangle of mutually 
adjacent vertices it never happens that one of these vertices is translated by ei  and another by 
-ei. This means that the three vertices are translated by vectors which lie in a single quadrant 
of R2  and hence do not have 0 in their convex hull. We have thus obtained a fixed-point-free 
mapping, which contradicts the Brouwer Theorem. . 

4. The n-dimensional Hex Theorem. The formal definition of an n-dimensional Hex board 
is a direct generalization of the one used in Section 3 for the case n =2. 



19791 THE GAME OF HEX AND THE BROUWER FIXED-POINT THEOREM 825 

DEFINITION.The n-dimensional Hex board of size k, H," consists of all vectors (vertices) 
z =(zi,...,zn) EZ n  such that 1 G zi G k, i =1,.. . ,n. A pair of vertices z and z' are adjacent if 

Iz-z'I= 1 (4.1) 

and 
z and z' are comparable ( 4 4  

(meaning again zi >z,! for all i or z,! >zi for all i). 
To avoid typographical clutter we will henceforth omit subscripts and superscripts and 

denote H," simply by H. 
For each i we define 

H ~ - = { Z I Z E H , Z ~ = I )  

H ~ + = { Z I Z E H ,zi=k) .  

A labeling of H is a mapping L from H to N =  {1,2,. .., n}. We can now state for the third 
time 

HEX THEOREM. For any labeling L there is at least one i E  N such that L-'(i) contains a 
connected set which meets Hi- and q.+.(Such a set will be called a winning i-set.) 

We remark that the proof that the n-dimensional Hex and Brouwer Theorems are equivalent 
is obtained by a purely mechanical generalization of the two-dimensional proof of the previous 
section. From the game-theoretic point of view n-person Hex is probably not of much interest. 
Aside from the mechanical problem of designing a practical board there is the usual difficulty of 
multi-person games that players may form coalitions, and there seems to be no very satisfactory 
theory as to how these should be formed. It is of some interest to note that in view of the Hex 
theorem various variants of ordinary Hex are possible. For example, the rule could be that the 
first player who connects his opposite faces is the loser rather than the winner, or that player i 
wins if player i + 1 connects his opposite faces. 

To prove the theorem we define the augmented Hex board A to be all z € 2 "  with 0 <zi 
G k + 1. We further define 

We refer to the sets 4+,4-as the faces of A. 
For our proof we need some further terminology. 
Let ei be ith unit vector in R n  and let e be the n-vector, all of whose coordinates are 1. A 

simplex of Rn  (more usually an n-simplex) is an (n + 1)-tuple of vertices a =(zO,.. . , z ") where 
z i  EZ n  and 

z i + ~ - z i = e r  for some r E N (4.3) 
and 

~ i + l - ~ i + ~ j + l - ~ j  (4.4)fori+j. 

Notice that for a c every pair of z i  and z j  in a are adjacent from (4.1) and (4.2). The i-facet 
of a is the n-tuple r i=(z l , .  ..,zi-', z i+ ',...,zn). An important simplex in what follows will be 
aO=(O,el,e' +eZ,. . .,e). Note that all vertices of this simplex lie in H, and its n-facet TO=,(@. ..,el 
+eZ+. +en-')  lies in Fn-. 

For 0 < i  <n the i-neighbor of a is the simplex d whose vertices are the same as those of a 
except that z i  is replaced by ii=zi-I- z i +  zi+ '  . The vertex Z i  is called the mate of zi (with 
respect to a). The reader should verify that a satisfies (4.3), (4.4) and also verify the symmetty 
property that d is the i-neighbor of a if and only if a is the i-neighbor of a and that a and d 
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intersect in their common i-facet. We also define the 0-neighbor of a to be 6=(z1, ...,zn,iO) 
where i o=z l - zO+zn  and the n-neighbor of a to be 6=(in,z0, ...,zn-') where i n = z n - l - z n +  
zO. Again z0 and i0and also z n  and inare called mates, and if 6 is the 0-neighbor of a then a is 
the n-neighbor of 6, and a n  6 is the n-facet of a and the 0-facet of 6. 

We now extend the labeling L to A by defining it on the faces of I? using the lexicographic 
rule. 

L ( z ) = M i n { i l z ~ c . - )  i f z E u 4 -

=Min { ilz E c.+) otherwise. (4.5) 

We need one more definition. A simplex a or facet r is called completely labeled, abbreviated 
c.l., if L maps a or T onto all of N. Note that the simplex a0and its n-facet r0  are c.1. since, from 
(4.5), vertices of r0  have labels 1,2, ...,n. We now define a graph r whose nodes are all c.1. 
simplices in A. A pair of such simplices a and 6 are defined to be adjacent if they are neighbors 
and their intersection is a c.1. facet. The crucial observation is as in Section 2. 

LEMMA.Every node a of r has degree at most 2. 

w Let a =(zO,.. . ,zn)  be c.1. Then it has exactly two nodes z ', z j  which have the same label. 
Thus 6 is a c.1. neighbor of o if and only if it is the i or j neighbor of a. (For any other neighbor 
the facet corresponding to their intersection would not be c.1.) . 

We now observe that the simplex a0 has exactly one c.1. neighbor. That is, suppose 
L(e) = i > 1. Now the n-neighbor of a0 is 6O =(- en,O,. . . ,e' + . . . +en-') which is not in A since 
- en  is negative. The other vertex of a0 with label i is e l + .  . . +ei-' and its mate is 
el + . . . +ei-2 +ei  which is in A so a0 has degree 1. (Exercise: What if L(e) = l?) 

Applying the Fundamental Graph Lemma of Section 2 we see that a0 is the initial node of a 
simple path P=(aO,a',... ,am). We claim 

LEMMA. The c.1.-facet of a m  lies on some face Fi+of I?. 
Let a m  =(zO,.:,,zn). Since amhas only one neighbor it must be that for some i the mate ii 

of z i  is not in fi. Now for O<i<n this cannot happen, for t i - ' < i i < z i + '  and since zi-' and 
zi+ '  are in fi so is ii.Suppose that a m  has no 0-neighbor; this means that iO=zl-zO+zn is not 
in A. Let z l -zO= er. Then i0is not in fi only if zP= k +  1; but then from (4.4) we see that 
z j=k + 1 for all i >0, so the 0-facet of a m  lies on Fr+as claimed. 

It remains to consider the possibility that a m  has no n-neighbor which would imply 
i n = z ~ - z n + z n - l  is not in A. If zn-zn- '  =er then this means z:=O; but again by (4.4) this 
means that z j=0  for i <n, so the n-facet T of a m  lies in Fr-.But from (4.5) r can only have labels 
i <r, so since 7 is c.1. it follows that r =n and T EFn-.To show that this is impossible we show 
that if 7 = (zO,.. . ,zn-') is c.1. and lies in F; then 7 =rO. We claim first that zO=O; for if, say, 
z0>0, then the z,! >0 for all i, and r could not be a label of T .  Likewise z '=el, for if z were any 
other unit vector then no vertex of r would get label 2. The same argument shows that 
zZ- z1 =e2 and so on. On the other hand amcannot have r0 as a facet because then P would be 
a cycle, whereas we know it is a path. . 

The Hex Theorem is now proved, because if a m  has a c.1. facet on 4+then there is a winning 
i-set. One merely chooses the vertices labeled i in each simplex of the sequence P, and note that 
they form a connected set. Further the vertex e' + . . +ei- ' of o0 lies on 4.- and has label i so 
this set meets F; and F:. . 

The above proof may seem a bit involved, but its important feature is that it is entirely 
constructive and leads to a very simple algorithm for finding a winning i-path. More important, 
as we shall see in a moment, it gives an effective way of finding "almost fixed points" of 
mappings. 



Here is the algorithm. Given the labeling L, examine the label of the vertex e. If L(e) = i, 
bring in the mate iiof the vertex z i  (with respect to a?. Call the new simplex a'. Now examine 
the label of ii.There is exactly one other vertex of a' having this label. Replace it by its mate, 
etc. Each time a new vertex is brought into a simplex ak the other vertex of ak with the same 
label is dropped and replaced by its mate. As our proof shows, one eventually constructs in this 
way a winning i-path. 

By combining the ideas of this section with those of Section 3 one is able to locate for any 
continuous function f of Ininto itself points which are moved by arbitrarily small amounts. Let 
us be somewhat more precise and say the point x in the n-cube Inis moved in the direction i if 
I f  (x)- X I =  If;(x)- xi[ (in case of ties choose the smallest subscript). To find a nearly fixed point 
choose a Hex board H,".The larger the value of k, the better the approximation will be. The 
label L(z) of the vertex z is then defined to be the direction in which z/k is moved under f. Of 
course it is not necessary to calculate the labels of all the n!kn points of Hi.One simply follows 
the Hex algorithm, calculating the label of a vertex only if it is brought into some simplex of the 
path P. The Hex theorem guarantees that at some point one must encounter two vertices, z and 
z', which are adjacent and such that both are moved in the direction i but the first is moved 
forward, that is, A(z) -zi > 0; and the second is moved backward, A(z) -zi >0.This follows from 
the fact that points on the back (front) i-face of the n-cube cannot move backward (forward). 
But, clearly, if two nearby points are moved in opposite directions then neither can be moved 
very far if k is large. (The statement may be made precise by the usual E-S uniform continuity 
argument.) 

For more information on the subject of fixed-point chasing the text [3] is recommended. 
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THE "REAL" PROJECTIVE PLANE WITHOUT CONTINUITY 

MARVIN JAY GREENBERG 

The title of this article refers to the elegant treatise The Real Projective Plane by H. S. M. 
Coxeter [I], in which the main theorems of classical plane projective geometry are proved 
synthetically from axioms of incidence and order. The only non-elementary axiom is the axiom 
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